TODAY’s Paper

Total Question: 52
Mcqz: 40
Subjective question: 12
4 q of 5 marks
4 q of 3 marks
4 q of 2 marks

Guidelines:
Prepare this file as I included all past papers and current papers (shared till now) in it. You will have to clear the concepts and formulas of topics according to which questions are solved in file.

TODAY’s PAPER no 1

Objective: MCQz

<table>
<thead>
<tr>
<th>Topic</th>
<th>Number of Mcqz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ratio Test, Convergence, Divergence</td>
<td>5</td>
</tr>
<tr>
<td>D.E (Integrating Factors + Homogenous + linear bernoli)</td>
<td>7</td>
</tr>
<tr>
<td>(Z = \sqrt{X^2 + Z^2})</td>
<td>1</td>
</tr>
<tr>
<td>Reactance & Impedence</td>
<td>1</td>
</tr>
<tr>
<td>Damped Motion</td>
<td>2</td>
</tr>
<tr>
<td>Maxima</td>
<td></td>
</tr>
<tr>
<td>Quasi period</td>
<td>3</td>
</tr>
<tr>
<td>Besslens’s Equation</td>
<td>1</td>
</tr>
<tr>
<td>Matrix Type (square + system to matrix conversion)</td>
<td>6</td>
</tr>
<tr>
<td>Eigen Values + Eigen Vector</td>
<td>4</td>
</tr>
<tr>
<td>Multiplicity of Eigen Vector</td>
<td>3</td>
</tr>
</tbody>
</table>
Please review the formulas of above topics.

Q:1

\[
2 \frac{dx}{dt} - 5x + \frac{dy}{dt} = 5e^t
\]
\[
\frac{dx}{dt} - x + \frac{dy}{dt} = e^t
\]

lec 36 example 1

in decoupled form.

\[
2 \frac{dx}{dt} - 5x + \frac{dy}{dt} = 5e^t
\]
\[
\frac{dx}{dt} - x + \frac{dy}{dt} = e^t
\]

\[
(2D - 5)x + Dy = 5e^t
\]
\[
(D - 1)x + Dy = e^t
\]

Determinants are

\[
\begin{vmatrix}
2D - 5 & D \\
D - 1 & D
\end{vmatrix},
\begin{vmatrix}
5e^t & D \\
e^t & D
\end{vmatrix},
\begin{vmatrix}
2D - 5 & 5e^t \\
D - 1 & e^t
\end{vmatrix}
\]

Therefore, in decoupled form, we get

\[
\begin{vmatrix}
2D - 5 & D \\
D - 1 & D
\end{vmatrix}x
\begin{vmatrix}
5e^t & D \\
e^t & D
\end{vmatrix}
\]

\[
\begin{vmatrix}
2D - 5 & D \\
D - 1 & D
\end{vmatrix}y
\begin{vmatrix}
2D - 5 & 5e^t \\
D - 1 & e^t
\end{vmatrix}
\]

Q:2
Find order of homogenous equation obtained from non homogenous differential equation:

\[y'' + 4y' + 3y = 4x^2 + 5 \] \(\text{(2 MARKS)} \)

Find the eigenvalues of the following system

\[
X' = \begin{pmatrix} 3 & -9 \\ 4 & -3 \end{pmatrix} X
\]

Solution:

\[
X' = \begin{pmatrix} 3 & -9 \\ 4 & -3 \end{pmatrix} X
\]

for eigen values, \(|A - \lambda I| = 0 \)

\[
\begin{vmatrix} 3 - \lambda & -9 \\ 4 & -3 - \lambda \end{vmatrix} = 0
\]

\[(3 - \lambda)(-3 - \lambda) + 36 = 0 \]
\[3(-3 - \lambda) - \lambda(-3 - \lambda) + 36 = 0 \]
\[-9 - 3\lambda + 3\lambda + \lambda^2 + 36 = 0 \]
\[-9 + \lambda^2 + 36 = 0 \]
\[\lambda^2 + 27 = 0 \]

\(\lambda = \sqrt{27}i \) and \(-\sqrt{27}i \) are the two complex eigen values

Q:3
What is Chemical reaction first order equation? \(\text{(2) Page no 100} \)
Answer:

\[
\frac{dX}{dt} = kX
\]

\(k < 0 \) because \(X \) is decreasing.

Q:4
What is charachteristic equation? \(\text{Page no 379} \)
Answer:

\[\det(A - \lambda I) = 0 \]

This equation is called the characteristic equation of the matrix \(A \).

Q:5
Can we extend power series?
Answer: Page no 268
I answered in yes and then wrote the extended form of power series.

\[\sum_{n=0}^{\infty} c_n (x-a)^n = c_0 + c_1(x-a) + c_2(x-a)^2 + \cdots. \]

Q:6 Page no 371

Find the derivative and the integral of the following matrix

\[X(t) = \begin{pmatrix} \sin 2t \\ e^{3t} \\ 8t-1 \end{pmatrix} \]

Solution:
The derivative and integral of the given matrix are, respectively, given by

\[X'(t) = \begin{pmatrix} \frac{d}{dt}(\sin 2t) \\ \frac{d}{dt}(e^{3t}) \\ \frac{d}{dt}(8t-1) \end{pmatrix} = \begin{pmatrix} 2\cos 2t \\ 3e^{3t} \\ 8 \end{pmatrix} \]

Q:7
Write system of equation in matrix form?
Solution: Page no 387
\[
\begin{align*}
\frac{dx}{dt} &= -3x + 4y - 9z \\
\frac{dy}{dt} &= 6x - y \\
\frac{dz}{dt} &= 10x + 4y + 3z \\
\end{align*}
\]

Solution:

\[
\begin{bmatrix}
\frac{dx}{dt} \\
\frac{dy}{dt} \\
\frac{dz}{dt}
\end{bmatrix} =
\begin{bmatrix}
-3 & 4 & -9 \\
6 & -1 & 0 \\
10 & 4 & 3
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
z
\end{bmatrix}
\]

Q:8

Deduce special case of logistic equation (epidemic spread)? (5)

The natural assumption is that the rate \(\frac{dx}{dt} \) of spread of disease is proportional to the number \(X(t) \) of the infected people and number \(Y(t) \) of people not infected people. Then

\[
\frac{dx}{dt} = kxy
\]

Since

\[
x + y = n + 1
\]

Therefore, we have the following initial value problem

\[
\frac{dx}{dt} = kx(n+1-x), \quad x(0) = 1
\]

The last equation is a special case of the logistic equation and has also been used for the spread of information and the impact of advertising in centers of population.

Q:9

Find order of homogenous equation obtained from non homogenous differential equation:

\[
y'' + 4y' + 3y = 4x^2 + 5 ?? (2 MARKS)
\]
Q:10:

Find a series solution for the differential equation $y'' + y = 0$ about $x_0 = 0$ such that

Find condition of coefficient for $a_{n+2} & a_n (c_{n+2} & c_n)$?

Q:11

Which series is identically zero?

Answer:

Series that are Identically Zero

If for all real numbers x in the interval of convergence, a power series is identically zero i.e.

$$
\sum_{n=0}^{\infty} c_n (x-a)^n = 0, \quad R > 0
$$

Then all the coefficients in the power series are zero. Thus we can write

$$
c_n = 0, \quad \forall \ n = 0, 1, 2, \ldots
$$

Q:12

A

$$
\begin{bmatrix}
3 & -18 \\
2 & -9
\end{bmatrix}
$$

Eigenvalues?

Eigenvectors?

Note: I am not going to solve this question solve it by your self by consulting two examples below.

==============First Paper End==============

Q1: Find Coefficient of matrix:

$$
\frac{dx}{dt} = -3x - 2y
$$
\[\frac{dy}{dt} = 5x + 7y \]

Solution:

Cofficient of matrix =

\[A = \begin{bmatrix} -3 & -2 \\ 5 & 7 \end{bmatrix} \]

Q2: Eigen Values of metrics.

\[A = \begin{bmatrix} 2 & 3 \\ 0 & 3 \end{bmatrix} \]

Consider the question below:

\[A = \begin{pmatrix} 3 & -9 \\ 4 & -3 \end{pmatrix} \]

for eigen values, \(|A - \lambda I| = 0\)

\[\begin{vmatrix} 3 - \lambda & -9 \\ 4 & -3 - \lambda \end{vmatrix} = 0 \]

\((3 - \lambda)(-3 - \lambda) + 36 = 0\)

\(3(-3 - \lambda) - \lambda (-3 - \lambda) + 36 = 0\)

\(-9 - 3\lambda + 3\lambda + \lambda^2 + 36 = 0\)

\(-9 + \lambda^2 + 36 = 0\)

\(\lambda^2 + 27 = 0\)

\(\lambda = \sqrt{27}i \) and \(-\sqrt{27}i\) are the two complex eigen values

This question is similar to above.

Q3: whether or not a singular points have real number if not then give some examples?
Q4: Solve the differential equation. \(\frac{1}{y} \frac{dy}{dx} = 1 \)

Solution:

\[
\frac{1}{y} \frac{dy}{dx} = 1 \\
\int \frac{dy}{y} = \int (1)dx \\
\ln y = x + c \\
y = e^{x+c}
\]

Q5: Complementary solution of DE

\(y' - 4y' + 4y = 2e^{2x} \)

Solution: (Page no 182)

To find the complementary function, we consider:

\(y' - 2y' + y = 0 \)

The auxiliary equation is:

\(m^2 - 2m + 1 = 0 \Rightarrow (m-1)^2 = 0 \Rightarrow m = 1, 1 \)

The complementary function for the given equation is:

\(y_c = c_1 e^x + c_2 xe^x \)

Q6: State the Bessel's function of first kind of order \(\frac{1}{2} \) and \(-1/2\).

Solution: (Page no 313)
Only put the value of $\frac{1}{2}$ in $J_v(x)$ and $-\frac{1}{2}$ in $J_{-v}(x)$ at the places of v.

Q7: Define the derivative of

$$A(t) = \begin{bmatrix} e^{2t} \\ t^2 \\ 8 \end{bmatrix}$$

Answer: Repeated

Q8: Find the eigenvalues of

$$A = \begin{bmatrix} 1 & -1 \\ 4 & -1 \\ 9 & 3 \end{bmatrix}$$

Solution:

Consider the question below.
\[
A = \begin{pmatrix} 3 & -9 \\ 4 & -3 \end{pmatrix}
\]

for eigen values, \(|A - \lambda I| = 0\)

\[
\begin{vmatrix} 3-\lambda & -9 \\ 4 & -3-\lambda \end{vmatrix} = 0
\]

\((3-\lambda)(-3-\lambda) + 36 = 0\)

\(3(-3-\lambda) - \lambda(-3-\lambda) + 36 = 0\)

\(-9 - 3\lambda + 3\lambda + \lambda^2 + 36 = 0\)

\(-9 + \lambda^2 + 36 = 0\)

\(\lambda^2 + 27 = 0\)

\(\lambda = \sqrt{27}i \) and \(-\sqrt{27}i\) are the two complex eigen values

Q9: bht lamba tha mery sy note ni hoa time thora tha is lia ☺

Q10: Find the auxiliary solution of \(x' = 3x - y - 1 \) and \(y' = y + x - 4e^t \)

Consult page no 141

Q11: Write down the system of differential equations (5marks)

\[
\frac{dx}{dt} = 6x + y + 6t, \quad \frac{dy}{dt} = 4x + 3y - 10t + 4
\]

In form of \(X' = AX + F(t) \)

Solution:

\[
X' = \begin{pmatrix} 6 & 1 \\ 4 & 3 \end{pmatrix} X + \begin{pmatrix} 6t \\ -10t + 4 \end{pmatrix}
\]
Q: An electronic component of an electronic circuit that has the ability to store charge and opposes any change of voltage in the circuit is called

- Inductor
- Resistor
- Capacitor
- None of them

Q: If \(A_0 \) is initial value and \(T \) denotes the half-life of the radioactive substance than

\[
T = \frac{1}{2A} \\
\frac{dA}{dt} = KA \\
A(T) = \frac{A_0}{2}
\]

None of the above

Q: Integrating factor of the given equation \(x \cos x \frac{dy}{dx} + y(x \sin x + \cos x) \) is

- Xsecx
- Cosx
- Cotx
- Xsinx

Q: Operator method is the method of the solution of a system of linear homogeneous or linear non-homogeneous differential equations which is based on the process of systematic elimination of the

- Dependent variables
Q: If E(t) = 0, R = 0 Electric vibration of the circuit is called_________

Free damped oscillation
Un-damped oscillation
Over damped oscillation
None of the given

Q: Eigen value of a matrix \[
\begin{pmatrix}
3 & 4 \\
-1 & 7
\end{pmatrix}
\]

5, 5
10, 5
25, 5
None

Q: Eigen value of a matrix \[
\begin{pmatrix}
1 & 1 \\
1 & 1
\end{pmatrix}
\]

2,0
1,1
1,2
None

Q: For Eigen values \(\lambda = 5, 5 \) of a matrix \[
\begin{pmatrix}
3 & 4 \\
-1 & 7
\end{pmatrix}
\]
, there exists......... Eigen vectors.

infinite
one
two
three
Q: If a matrix has 1 row and 3 columns then the given matrix is called________

Column matrix

Row matrix

Rectangular matrix

None

\[\frac{dy}{dx} = \frac{x + y}{x} \]

Q: The general solution of differential equation \(\frac{dy}{dx} + x \ln y = ye^x \) is given by

\[e^x \]

\[e^y \]

\[\frac{1}{e^x} \]

\[e^y \]

Q: The integrating factor of the D.E \(\frac{dy}{dx} + y \ln y = ye^x \) is

\[e^x \]

\[e^y \]

\[\frac{1}{e^x} \]

\[e^y \]

Q: For the equation of free damped motion \(\frac{dx^2}{dt^2} + 2\lambda \frac{dx}{dt} + \omega^2 x = 0 \) the roots are

\[m_1 = -\lambda + \sqrt{\lambda^2 + \omega^2} \] & \[m_2 = -\lambda - \sqrt{\lambda^2 + \omega^2} \] if \(\lambda^2 - \omega^2 > 0 \) Then the equations said to be:
Under damped

Over damped

Critically damped

None of them

Q: For the system of differential equations \(\frac{dy}{dt} = 2x, \frac{dx}{dt} = 3y \) the independent variable is

(Are)

- X,t
- Y,t
- X,y
- t

Q: For the system of differential equations \(\frac{dy}{dt} = 2x, \frac{dx}{dt} = 3y \) the dependent variable is

(Are)

- X,t
- Y,t
- X,y
- t

Q:
\[
\begin{pmatrix} 4 - \lambda & 1 & 0 \\ 0 & 4 - \lambda & 1 \\ 0 & 0 & 4 - \lambda \end{pmatrix} = 0 \]

\(\lambda \) 4 of multiplicity of 1

\(\lambda \) 4 of multiplicity of 2

\(\lambda \) 4 of multiplicity of 3
None of the given.

Q: wronksin of x, \(x^2 \) is

\(x^2 \)

\(x \)

\(0 \)

None of the above

a) Matrix A nd value of lambda was given to find the eigen vector? 3 marks.

Answer: (This question is solved by Shining Star as original question was missing so I put it here for reference.)

\[
A = \begin{pmatrix}
-3 & 1 \\
2 & -4
\end{pmatrix}
\]

corresponding Eigen value \(\lambda = -2 \).

\[
\begin{pmatrix}
-3-(-2) & 1 \\
2 & -4-(-2)
\end{pmatrix}
\]

\[
\begin{pmatrix}
-1 & 1 \\
2 & -2
\end{pmatrix}
\]

Add two times row 1 in row 2

\[
\begin{pmatrix}
-1 & 1 \\
0 & 0
\end{pmatrix}
\]

\(-k_1 + k_2 = 0\)

\(k_1 \quad k_2\)

Choosing \(k_2 = 1 \), we get \(k_1 = 1 \)

therefore, eigen vector is \(V \begin{pmatrix} 1 \\ 1 \end{pmatrix} \)

b) \(X' = AX \) was given to find the eigenvalue and Eigen vector? 5 marks.

(This question is solved by Shining Star as original question was missing so I put it here for reference.)
For eigen values consult this question and for eigen vector look at the above.

\[
X' = \begin{pmatrix} 3 & -9 \\ 4 & -3 \end{pmatrix} X
\]

Solution:

\[
X' = \begin{pmatrix} 3 & -9 \\ 4 & -3 \end{pmatrix} X
\]

for eigen values, \(|A - \lambda I| = 0\)

\[
\begin{vmatrix} 3 - \lambda & -9 \\ 4 & -3 - \lambda \end{vmatrix} = 0
\]

\((3 - \lambda)(-3 - \lambda) + 36 = 0\)

\(3(-3 - \lambda) - \lambda(-3 - \lambda) + 36 = 0\)

\(-9 - 3\lambda + 3\lambda + \lambda^2 + 36 = 0\)

\(-9 + \lambda^2 + 36 = 0\)

\(\lambda^2 + 27 = 0\)

\(\lambda = \sqrt{27}i\) and \(-\sqrt{27}i\) are the two complex eigen values

c) Solve DE dy-7dx=0 for initial value f(0)=1? 5 marks.

Answer:
\[dy - 7dx = 0 \]
\[\int dy = \int 7dx \]
\[y = 7(x) + c \]
\[f(0) = 1 \]
\[f(0) = 7(0) + c \]
\[f(0) = 0 + c \]
\[C = y + x \]
\[y = 7x + 1 \]

d) Find the general solution of \(4x^2 y'' + 4xy' (4x^2-25)y=0 \) (it is the Bessel's Equation and same question is given in exercise pg 314 of our handouts)? 5 marks

Answer:

Bessel's differential equation is
\[x^2 y'' + xy' + \left(x^2 - v^2 \right) y = 0 \]

Example 1

Find the general solution of the equation
\[x^2 y'' + xy' + \left(x^2 - \frac{1}{4} \right) y = 0 \] on \((0, \infty)\)

Solution

The Bessel differential equation is
\[x^2 y'' + xy' + \left(x^2 - v^2 \right) y = 0 \] (1)
\[x^2 y'' + xy' + \left(x^2 - \frac{1}{4} \right) y = 0 \] (2)

Comparing (1) and (2), we get \[v^2 = \frac{1}{4} \], therefore \[v = \pm \frac{1}{2} \]

So general solution of (1) is
\[y = C_1 J_{1/2}(x) + C_2 J_{-1/2}(x) \]
e) When a function is said to be analytic at any point? 2 marks
Answer:
A function is said to be analytic at point $x = a$ if the function can be represented by power series in $(x-a)$ with a positive radius of convergence.

f) What is the ratio test? (It's on pg 264 of our handouts) 5 marks
To determine for which values of x a power series is convergent, one can often use the Ratio Test. The Ratio test states that if

$$\sum_{n=0}^{\infty} a_n = \sum_{n=0}^{\infty} c_n(x-a)^n$$

is a power series and

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{c_{n+1}}{c_n} \right| |x-a| = L$$

Then:
- The power series converges absolutely for those values of x for which $L < 1$.
- The power series diverges for those values of x for which $L > 1$ or $L = \infty$.
- The test is inconclusive for those values of x for which $L = 1$.

g) What is the formula for radius of convergence? (It's on pg 265 of our handouts) 2 marks

Answer:
$$R = \lim_{n \to \infty} \left| \frac{c_n}{c_{n+1}} \right|$$

h) Write system of linear differential equations for two variables x and y? (It's on pg 333 of our handouts) 2 marks
i) Write any 3 D.Es of order 2? 3 marks Page no 207
Answer:
\[a \frac{d^2y}{dx^2} + b \frac{dy}{dx} + cy = f(x) \]

j) D.E was given to convert in normal form? 3 marks
Answer:

Reduce the third-order equation
\[2y''' = -y - 4y' + 6y'' + \sin t \]
or
\[2y''' - 6y'' + 4y' + y = \sin t \]
to the normal form.
Solution: Write the differential equation as
\[y''' = -\frac{1}{2}y - 2y' + 3y'' + \frac{1}{2}\sin t \]
Now introduce the variables
\[y = x_1, y' = x_2, y'' = x_3. \]
Then
\[\begin{align*}
x_1' &= x_2 \\
x_2' &= x_3 \\
x_3' &= y'' = x_3 \\
x_4' &= -\frac{1}{2}x_1 - 2x_2 + 3x_3 + \frac{1}{2}\sin t
\end{align*} \]

k) Any example of boundary value problem? 2 marks
Consider the function
\[y = 3x^2 - 6x + 3 \]
We can prove that this function is a solution of the boundary-value problem
\[x^2 y'' - 2xy' + 2y = 6, \]
\[y(1) = 0, \quad y(2) = 3 \]
Since
\[\frac{dy}{dx} = 6x - 6, \quad \frac{d^2y}{dx^2} = 6 \]
Therefore
\[x^2 \frac{d^2y}{dx^2} - 2x \frac{dy}{dx} + 2y = 6x^2 - 12x + 12x + 6x^2 - 12x + 6 = 6 \]
Also
\[y(1) = 3 - 6 + 3 = 0, \quad y(2) = 12 - 12 + 3 = 3 \]
Therefore, the function \(y \) satisfies both the differential equation and the boundary conditions. Hence \(y \) is a solution of the boundary value problem.

Note: Power series sy ziada NHI tha. Lecture 35 to 45 pr ziada emphsis tha

Q No.2 ------------------5 marks:

Write annihilator operator for \(x + 3xe^{6x} \) e ki power 6 xs

\[g(x) = 4e^{2x} - 6xe^{2x} \]

\[(D - 2)^2 \left(4e^{2x} - 6xe^{2x} \right) = (D^2 - 4D + 4)(4e^{2x}) - (D^2 - 4D + 4)(6xe^{2x}) \]

or
\[(D - 2)^2 \left(4e^{2x} - 6xe^{2x} \right) = 32e^{2x} - 32e^{2x} + 48xe^{2x} - 48xe^{2x} + 24e^{2x} - 24e^{2x} \]

or
\[(D - 2)^2 \left(4e^{2x} - 6xe^{2x} \right) = 0 \]

Therefore, the annihilator operator of the function \(g \) is given by

\[L = (D - 2)^2 \]

We notice that in this case \(\alpha = 2 = n \).

Q No.3 ------------------3 marks:

Write the solution of simple harmonic motion in alternative simpler form
\[x(t) = c_1 \cos wt + c_2 \sin wt \] from lec 22 page 199
Q No.4 ----------------- 2 marks:
Define general linear DE of nth order

Answer:

\[a_n(x) \frac{d^n y}{dx^n} + a_{n-1}(x) \frac{d^{n-1} y}{dx^{n-1}} + \cdots + a_1(x) \frac{dy}{dx} + a_0(x)y = g(x) \]

Define elementary row operation.

Answer:

Addition or multiplication of two rows.

The elementary row operations consist of the following three operations

- Multiply a row by a non-zero constant.
- Interchange any row with another row.
- Add a non-zero constant multiple of one row to another row.

Eigenvalue of multiplicity m 3

Answer:
Suppose that m is a positive integer and $(\lambda - \lambda_1)^m$ is a factor of the characteristic equation

$$\det(A - \lambda I) = 0$$

Further, suppose that $(\lambda - \lambda_1)^m + 1$ is not a factor of the characteristic equation. Then the number λ_1 is said to be an eigenvalue of the coefficient matrix of multiplicity m.

Fundamental of matrix 3

Answer:

Suppose that the a fundamental set of n solution vectors of a homogeneous system $X' = AX$, on an interval I, consists of the vectors

$$X_1 = \begin{pmatrix} x_{11} \\ x_{21} \\ \vdots \\ x_{n1} \end{pmatrix}, \quad X_2 = \begin{pmatrix} x_{12} \\ x_{22} \\ \vdots \\ x_{n2} \end{pmatrix}, \ldots, \quad X_n = \begin{pmatrix} x_{1n} \\ x_{2n} \\ \vdots \\ x_{nn} \end{pmatrix}$$

Then a fundamental matrix of the system on the interval I is given by

$$\phi(t) = \begin{pmatrix} x_{11} & x_{12} & \cdots & x_{1n} \\ x_{21} & x_{22} & \cdots & x_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n1} & x_{n2} & \cdots & x_{nn} \end{pmatrix}$$

What is determinant? How to find it.

Determinant of a Matrix

Associated with every square matrix A of constants, there is a number called the determinant of the matrix, which is denoted by $\det(A)$ or $|A|$.

Write equation in matrix form.
Find general solution........ 5marks..

Forbenius Theorem............

\[y = (x-x_0)^r \sum_{n=0}^{\infty} c_n (x-x_0)^n = \sum_{n=0}^{\infty} c_n (x-x_0)^{n+r} \]

5marks

Super position method for vectors
Answer:
\[y = C_1y_1(x) + C_2y_2(x) \]

Explain convergence and infinity condition of a infinite series.

- If we choose a specified value of the variable \(x \) then the power series becomes an infinite series of constants. If, for the given \(x \), the sum of terms of the power series equals a finite real number, then the series is said to be convergent at \(x \).

What does these symbols mean?

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>(R_{ij})</td>
<td>Interchange the rows (i) and (j).</td>
</tr>
<tr>
<td>(cR_i)</td>
<td>Multiply the (ith) row by a nonzero constant (c).</td>
</tr>
<tr>
<td>(cR_i + R_j)</td>
<td>Multiply the (ith) row by (c) and then add to the (jth) row.</td>
</tr>
</tbody>
</table>

\(\frac{dy}{dt} = x, \quad \frac{dx}{dt} = y \)

Q2. Solve the system of differential equations by systematic elimination.
Solution:

\[
\frac{dy}{dt} = x \Rightarrow Dy - x = 0 \quad \ldots \ldots \text{(i)}
\]
\[
\frac{dx}{dt} = y \Rightarrow -y + Dx = 0 \quad \ldots \ldots \text{(ii)}
\]

Operate (ii) by \(D\), we get

\[-Dy + D^2x = 0 \quad \ldots \ldots \text{(iii)}\]

Add (i) and (iii), we get

\[Dy - x = 0\]
\[-Dy + D^2x = 0\]
\[D^2x - x = 0\]
\[(D^2 - 1)x = 0\]

Auxiliary equation is \(m^2 - 1 = 0\)

\[m = \pm 1\]

\[
x(t) = c_1e^t + c_2e^{-t}
\]

Put this in (i), we get

\[Dy - \left[c_1e^t + c_2e^{-t}\right] = 0\]
\[Dy = c_1e^t + c_2e^{-t}\]

Integrate both sides, we get

\[
y(t) = c_1e^t - c_2e^{-t}
\]

Q3. Find a series solution for the differential equation \(y'' + y = 0\) about \(x_0 = 0\) such that

\[a_{n+2} = -\frac{a_n}{(n+2)(n+1)} \quad n = 0, 1, 2, \ldots\]

\[y(x) = \sum_{n=0}^{\infty} a_n x^n\]

Solution:
\[a_{n+2} = -\frac{a_n}{(n+2)(n+1)}; \quad n = 0, 1, 2, \ldots\]

For \(n = 0\), \(a_2 = -\frac{a_0}{(0+2)(0+1)} = -\frac{a_0}{2}\)

For \(n = 1\), \(a_3 = -\frac{a_1}{(1+2)(1+1)} = -\frac{a_1}{6}\)

For \(n = 2\), \(a_4 = -\frac{a_2}{(2+2)(2+1)} = \frac{1}{12} = -\frac{a_2}{12} = -\frac{a_0}{2} = \frac{a_0}{24}\)

For \(n = 3\), \(a_5 = -\frac{a_3}{(3+2)(3+1)} = \frac{1}{20} = -\frac{a_3}{20} = -\frac{a_1}{6} = \frac{a_1}{120}\)

\[y(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4 + a_5 x^5 + \ldots\]

\[y(x) = a_0 + a_1 x + \left(-\frac{a_0}{2}\right) x^2 + \left(-\frac{a_1}{6}\right) x^3 + \left(\frac{a_0}{24}\right) x^4 + \left(\frac{a_1}{120}\right) x^5 + \ldots\]

\[y(x) = a_0 \left(1 - \frac{1}{2} x^2 + \frac{1}{24} x^4 + \ldots\right) + a_1 \left(x - \frac{1}{6} x^3 + \frac{1}{120} x^5 + \ldots\right)\]

\[X = \frac{4}{3} \cos 3t - \frac{5}{3} \sin 3t\]

Q4. Write solution in the form \(X = A \sin (wt + \phi)\).

\[A = \sqrt{\left(\frac{4}{3}\right)^2 + \left(-\frac{5}{3}\right)^2} = \frac{\sqrt{41}}{3}\]

\[\phi = \tan^{-1}\left(\frac{4/3}{-5/3}\right) = 0.6747\text{ radians}\]

\[x(t) = \frac{\sqrt{41}}{3} \sin (3t + 0.6747)\]

If the equation

\[M(x, y)dx + N(x, y)dy = 0\]

Q5. is not exact.

Case 1:
When \(\exists \) an integrating factor \(u(y) \), a function of \(y \) only. This happens if the expression

\[
\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} = \frac{M}{xM + yN}
\]

is a function of \(y \)

Case 2:

If the given equation is homogeneous and \(xM + yN \neq 0 \)

Then find the integrating factor in both cases.

Solution:

\[
u = \frac{1}{xM + yN}
\]

Q8. Under which conditions linear independence of the solutions for the differential equation

\[y'' + P(x)y' + Q(x)y = 0 \quad \text{...........(1)}\]

is guaranteed?

Solution:

Linear independence is guaranteed in case when the Wronskian of the two solutions is not equal to zero.

Q10. When Frobenius’ Theorem is used in Differential Equation

\[a_2(x)y'' + a_1(x)y' + a_0(x)y = 0\]

Equation

Solution:

When we have a regular singular point \(x = x_0 \), then we can find at least one series solution of the form

\[y = \sum_{n=0}^{\infty} c_n (x - x_0)^{\alpha r},\]

where \(r \) is the constant that we will determine after solving the differential equation.

Q12. Define Legendre’s polynomial of degree \(n \)

Solution:
Legendre polynomial is an n^{th} degree polynomial and it is given by the formula

$$P_n(x) = \frac{1}{2^n n!} \frac{d^n}{dx^n} (x^2 - 1)^n$$

Q13. What is the ordinary differential equation and give an example?

Solution:

A differential equation which only includes ordinary derivatives is known as ordinary differential equation. Some examples of ordinary differential equations include:

$$\frac{dy}{dx} = x^2 + y$$

$$\frac{dy}{dx} = (x^2 + 1)(y^2 + 1)$$

$$\frac{d^2 y}{dx^2} + 2 \frac{dy}{dx} + 3 y = 0$$